Best Management Practice Considerations for Cows in Confinement

Ron Lemenager, PhD, PAS
Purdue Animal Science

Preface

- Conventional production system
 - Grazing during the growing season
 - Harvested feeds during winter
 - Hay, ensiled crops
 - Supplements
 - Emphasis on extending grazing season
 - Stockpiled forage
 - Crop residues
 - Cover crops

Cows in Confinement

- Not a new concept
 - Traps, pasture sacrifice areas, drylots, semi-drylots, feedlots
- Timing
 - When grazing could damage the forage crop
 - Drought, snow cover, mud
 - When cows need close observation
 - Calving, breeding

Cows in Confinement

- Growing interest
 1. Reduce land dedicated to forage production
 2. Use cropland in double duty (grain, forage)
 3. Use locally available, economic feeds
 - Industry byproducts
 - Crop residues
 4. Cow herd expansion
 5. Bring in additional family members
- Opportunities
 - Nutrient utilization, labor efficiency, feed cost, unit cost of production
Background

Grain Prices

Nominal U.S. farm-level prices: Corn, wheat, and soybeans

Dollars per bushel

14
12
10
8
6
4
2
0

Source: USDA Agricultural Projections to 2023.

Grain Price Plateaus

Source: Ag Equipment Intelligence, Sept. 21, 2010.

Cropland and Pasture Values

Calving Season

- Ideal time depends on:
 - Environment
 - Availability of feeds
 - Intended target market
 - Labor accessibility
- 60% in spring (Feb-Apr)
 - Minimize impact of summer heat (calving/breeding)
 - Availability of forages to support lactation
- 15% in fall (Sep-Nov)
- 25% year round

USDA, 2009

Calving/Breeding in Confinement

- Many cow-calf operations have cropland?
- When is labor available?
- Is environment still an issue?
- Where are seasonal high cattle prices?

American Angus Convention, 2016

When Are Nutrient Requirements Highest?

- High Requirements
- Second trimester of Pregnancy
- Low Requirements

Mid to Late Lactation
Mid Gestation
Late Gestation
Early Lactation

American Angus Convention, 2016

Traditional Calving Scenarios

- Traditional Calving Scenarios
- Heat
- Summer Grass (May-Nov)
- Corn Stalks
- Mud, snow
- Harvesting
- Mud, snow
- Lact, 201d
- Lact, 205d
- Lact prep
- Mud, snow
- Lact prep, 90d
- Lact, 205d
- Heat
- Wean
- Breeding

American Angus Convention, 2016
Spring Calving Scenario (traditional)

Table 1. Price Index & Variability by Cattle Type, 2005-2011

<table>
<thead>
<tr>
<th>Month</th>
<th>Choice Steers (A-35s, MN)</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>97 98 101 104 99 101 104</td>
<td>103 103</td>
</tr>
<tr>
<td>Feb</td>
<td>206 217 227 216 213 213 222</td>
<td>27.7 24.1 26.6 27.8</td>
</tr>
<tr>
<td>Mar</td>
<td>96 98 101 104 99 101 104</td>
<td>103 103</td>
</tr>
<tr>
<td>Apr</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>May</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Jun</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Jul</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Aug</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Sep</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Oct</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Nov</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Dec</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
</tbody>
</table>

Source: Iowa State

Spring Calving Scenario (alternative)

Table 1. Price Index & Variability by Cattle Type, 2005-2011

<table>
<thead>
<tr>
<th>Month</th>
<th>Choice Steers (A-35s, MN)</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>101 101 104 99 101 104</td>
<td>103 103</td>
</tr>
<tr>
<td>Feb</td>
<td>206 217 227 216 213 213 222</td>
<td>27.7 24.1 26.6 27.8</td>
</tr>
<tr>
<td>Mar</td>
<td>96 98 101 104 99 101 104</td>
<td>103 103</td>
</tr>
<tr>
<td>Apr</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>May</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Jun</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Jul</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Aug</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Sep</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Oct</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Nov</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
<tr>
<td>Dec</td>
<td>115 126 135 132 132 129 132</td>
<td>42.9 45.5 44.7 51.9 53.7 56.9</td>
</tr>
</tbody>
</table>

Source: Iowa State

Best Management Practices

- **Altered Spring Calving Scenario**
 - Early lact, 120d
 - Mid-preg, 120d
 - Late preg, 90d
 - Plan:ng
 - Mud, snow
 - Harvesting
 - Corn stalks
 - Wean
 - Sod
 - Calving, fed
 - Wheat
 - Use straw as feed during mid-preg
 - Graze during late preg

- **Lost Calf**
 - Normal wean
 - Early wean + background

Source: Iowa State

Iowa State

American Angus Convention, 2016

Lemenager, 2016
Typical Age Distribution

- 15-20% average culling rate
 - Potential replacement heifers
 - Develop ~ 25% of calving cow number
 - ~ 20% 1st calf heifers
 - ~ 17% 2nd calf heifers
 - ~ 60% mature cows
- Opportunity to manage nutritional groups
 - Reduce feed cost
 - Avoid over/under feeding
 - Developmental (fetal/lactational) programming

Herd Health

- Balanced diets
 - Management of environmental stresses
 - Hot, humid
 - Cold, wind
 - Rain, mud
- Cons of confinement
 - Potential to concentrate disease organisms

Herd Health

- Mitigation
 - Easy observation
 - Sickness
 - Calving
 - Breeding
 - Easy to move and handle
 - Clean, dry bedding
 - Sound vaccination strategy
 - IBR, PI3, BVD, BRSV, 5-way Lepto (maybe others)
 - 7-way clostridia
 - Scours (E.coli, Rota-Corona virus)
 - Maybe (Pasteurella, Haemophilus)
 - Deworm
 - Calf colostrum

Value of Bedding-Pack Nutrients

- Anderson (2007) – North Dakota
 - More fertilizer value in bedding-pack than manure
 - Less ammonia volatilization
Bedding

- Corn stalks for cows – producer experience
 - Absorbent
 - Easier to bed
 - Easier to clean pens
- Straw and low quality forages
 - Absorbent
 - Harder to bed
 - Harder to clean pens
- ~1 LRB EOD in winter for 60 cows
- ~2 LRB ED in winter for 128 heifers

Environmental Concerns

- Each state has rules and regulations
- Confinement (CAFO) can be defined
 - By animal numbers
 - A defined period with < 50% vegetation
 - An environmental violation
- May require an nutrient management plan
- May require permits

Outside vs. Inside

- Manure spread by cow
- Soil compaction
- Riparian areas
- Animal observation
- Acc. to handling facil.
- Ice and snow
- Rough frozen ground
- Frost bite
- Bed, scape and haul
 - Minimized
 - Minimized
 - Easy
 - Easy
 - Minimized
 - Minimized
 - Minimized

Energy Requirements

- For each 10°F drop in wind chill below 30°F
 - Energy requirements increase:
 - 13% for moderate condition cows with a dry,
 winter haircoat
 - 30% for cows that are thin, wet, or have a summer
 hair coat
Outside vs. Inside

- **Activity**
- **Cold stress**
 - Birth weight
 - Dystocia
 - Hypothermia
 - Colostrum absorption
- **Mud**
- **Energy Requirements**
 - Reduced ~30%

- **Reduced**
- **Reduced**
 - Reduced
 - Reduced
 - Increased
- **Minimized**

Key Facility Considerations

Ventilation in Confinement

- **Respiratory challenges**
 - Humidity
 - Gasses (ammonia)
- **Mitigation** (potential for moisture condensation)
 - Ridge vents
 - Monoslope roof design
 - Eliminates air flow restrictions
 - Heat and moisture rise
 - Air movement over the cattle, not on the cattle
 - Increased solar radiation into bldg. – winter
 - Reduced heat load in bldg. - summer

Bunk Space Recommendations

- **Based primarily on animal size and diet**
 - 500-700 calves on grower diet
 - 12-18 inches
 - Mid-gestation cows
 - 24 inches
 - Late pregnant cows
 - 30 inches
 - Lactating cows
 - Up to 40 inches
- **Bunks on 2 sides of pen?**
Bunk Capacity Considerations

- Capacity is based on bunk dimensions
 - Throat height
 - Bottom width
 - Feed alley height and amount of flare
- Calves
 - 12” throat height (max. 18”)
 - Bottom width (max. 24”)
 - False bottom?
- Cows (high capacity)
 - Throat height (~22”)
 - Bottom width (~30”)

Calf Behavior

- Calves in feed bunk increase when:
 - Pens are not maintained (looking for a dry place)
 - Pens are crowded (looking for a quiet place)
 - Inadequate bunk space (cows pushing calves)

Animal Space Recommendations

- Outside lots (cow-calf pair)
 - 350 sq ft in a dry environment
 - Up to 800 sq ft in a cold wet environment
- Inside only (cow-calf pair)
 - Small cows (minimum of 85-90 sq. ft.)
 - Large cows (≥120 sq. ft.)
 - 100 for cow + 20 for calf
 - Allows some change in animal density

Pen Configuration

- Pen length and width dependent on:
 - Animal numbers
 - Equipment to be used
- Tractor + bale processor to bed pens
 - 80' allows driving in a circle
- Smaller equipment, different bedding strategy
 - Smaller pens could be justified
Pen Numbers

- Based on how building will be used
- From a nutritional view
 - 5 - 6 pens for the cow herd has some logic
 - Ex. 100 cow herd
 1. 25 replacement heifers
 2. 25 1st calf heifers + thin 2nd calf heifers
 3. 25 2nd calf heifers + thin mature cows
 4. 25 mature cows
 5. 25 mature cows

Calving Behavior

- Cows like to isolate themselves
- Placental fluids and membranes
 - Allow cows to initially identify calf
- Cows in tight confinement get confused
 - Too many smells from other cows calving
 - 1st calf heifers can be more confused
 - Not claim their calf
 - Claim another cow’s calf

Handling Facilities

- Designated pen for calving
 - Allows easier observation (feed alley in vehicle)
 - Calving cameras are an option (cell phone access)
 - Allows more space for calving cows and newborns
 - Individual calving pens (min. 10’x12’)
 - Can use portable corral panels
 - Can attach to pen divider, or feed bunk
 - Allows pairs to bond
- Drover’s alley connecting pens to handling
 - 12’ is a magic width
 - Can be the 12’ apron along the feed bunk
 - Can use the feed alley in double duty

Other Considerations

- Are some genetic lines more adaptable to confinement than others?
Creep Feeding

- Potential for lower WWt in confinement
- Creep feeding/early weaning justified?
 - Calf performance
 - Unit cost of production ($/lb calf weaned)
 - Calf injuries

240 Pair - Indoor

- 118 ft²/pair, 29” bunk/pair

200 Pair – Indoor/Outdoor

- 118(188) ft²/pair, 29” bunk
Herd Management Summary

- Intensified management
 - Nutrition and feeding
 - Herd health
 - Creep feeding/Early weaning
 - Bedding/Manure management
- Reduced maintenance energy requirement
- Nutritional grouping

Facility Summary

- 24 – 40 ″ bunk/cow
- ≥ 120 ft²/pair
- Designated calving pen(s)
- Creep feeding/early weaning
- Manure storage and handling
- Ventilation
- Animal observation and handling

Questions/Discussion

Ron Lemenager
rpl@purdue.edu
765-427-5972

Cow-calf Feasibility Worksheet

- 10 Key Factors (Moe Russell)
 - Cow longevity
 - Feed/pasture cost
 - Calf weaning weight
 - Manure value
 - Improved conception rate
 - Estrous sync and AI opportunity
 - Shifting calving season/higher seasonal prices
 - Calf mortality
 - Cow salvage value

55 page white paper
http://info.summitlivestock.com/cow-calf-package